Решение задач с помощью уравнения (уровень Б)
Многие задачи можно решить с помощью уравнений, следуя простому алгоритму (порядок действий):
Как перевести условие задачи на математический язык, оформить ее в формулы и записать уравнение?
Задача 1
За три дня продали 130 кг апельсинов. Во второй день продали 4/9 того, что продали в первый, а в третий - столько, сколько за первые два дня вместе. Сколько кг апельсинов продали в первый день?
Решение
1 день |
х |
Всего 130 кг |
2 день |
4/9 того, что в 1 день |
|
3 день |
Сколько за первые два дня вместе |
Условие задачи |
Математический язык |
Сколько кг апельсинов продали в 1 день |
х |
Во второй – 4/9 того, что продали в 1 день |
|
В третий - сколько за первые два дня вместе |
|
Всего 130 кг |
|
Полученное уравнение соответствует условию задачи
х = 45 (кг) – продали в 1 день
Проверка
(кг)
Ответ: 45 кг
Задача 2
Готовясь к экзамену, ученик планировал ежедневно решать 12 задач. Однако он решал ежедневно на 4 задачи больше, и уже за три дня до экзамена ему осталось решить 8 задач. Сколько дней планировал готовиться к экзамену?
Решение
За х возьмем количество дней, за которые ученик планировал готовиться к экзамену. Это вопрос задачи.
|
В день |
К-во дней |
Итог |
план |
12 |
х |
|
факт |
12+4 = 16 |
Раньше на 3 дня |
Осталось 8 задач |
Условие задачи |
Математический язык |
Сколько дней ученик планировал готовиться к экзамену |
х |
За 3 дня до экзамена |
(х – 3) |
Планировал ежедневно решать 12 задач |
12х |
Решал ежедневно на 4 задачи больше |
12+4=16 |
За 3 дня до экзамена осталось решить 8 задач |
16(х – 3) + 8 |
При составлении уравнения надо понимать, что количество задач, которые надо было решить в обоих рассматриваемых случаях одинаково, но если ученик будет решать больше задач в день, то быстрее закончит подготовку
16х – 48 + 8 = 12х
4х = 40
х = 10 – дней ученик планировал готовиться к экзамену
Проверка
12 * 10 = 120 (д)
16 * (10 – 3) = 16*7 + 8 = 112 (д)
120 – 112 = 8 (д) – соответствует условию
Ответ: 10 дней
Задача 3
Мастер планировал ежедневно изготавливать по 24 детали, чтобы выполнить заказ вовремя. Но поскольку он изготавливал ежедневно на 15 деталей больше, то уже за шесть дней до окончания срока работы он изготовил 21 деталь сверх заказа. Сколько дней мастер должен был работать над заказом?
Решение
|
В день |
К-во дней |
Итог |
план |
24 |
х |
|
факт |
24+15=39 |
За 6 дней до окончания срока |
На 21 деталь сверх заказа |
За х возьмем количество дней, которые мастер должен был работать над заказом. Это вопрос задачи.
Условие задачи |
Математический язык |
Сколько дней мастер должен был работать над заказом |
х |
За 6 дней до окончания срока |
(х – 6) |
Планировал ежедневно изготавливать по 24 детали |
24х |
Изготавливал ежедневно на 15 деталей больше |
24 + 15 = 39 |
Изготовил на 21 деталь сверх заказа |
39 (х – 6) – 24х = 21 |
Полученное уравнение соответствует условию задачи
39 (х – 6) – 24х = 21
39х – 234 – 24х = 21
15х = 21+234
15х = 255
х = 255:15
х = 17 – количество дней, которые мастер должен был работать над заказом
Проверка
24*17=408 (д)
408 + 21 = 429 (д)
39*(17 – 6) = 39*11 = 429 (д)
Ответ: 17 дней
Задача 4
Из одного города выехал автомобиль со скоростью 65 км/ч, а через 2 ч после этого из другого города навстречу ему выехал второй автомобиль со скоростью 75 км/ч. Найдите время, которое потратил на дорогу каждый автомобиль до момента встречи, если расстояние между городами равно 690 км.
S = Vt
Встречное движение V1t1 + V2t2 = S
Решение
|
Скорость V (км/ч) |
Время t (ч) |
Расстояние S (км) |
1 авт. |
65 |
х |
690 |
2 авт. |
75 |
Через 2 часа |
Условие задачи |
Математический язык |
Потратил на дорогу первый автомобиль до момента встречи |
х |
Через 2 часа навстречу ему выехал второй автомобиль |
(х – 2) |
Проехал первый автомобиль до момента встречи |
65х |
Проехал второй автомобиль до момента встречи |
75(х – 2) |
Расстояние между городами равно 690 км |
65х + 75(х – 2) = 690 |
Полученное уравнение соответствует условию задачи
65х + 75(х – 2) = 690
65х + 75х – 150 = 690
140х = 840
х = 840:140
х = 6 (ч) – время, встречи 1 автомобиля
(х – 2) = 6 – 2 = 4 (ч) – время, встречи 2 автомобиля
Проверка
65*6 = 390 (км)
75*4 = 300 (км)
390 + 300 = 690 (км)
Ответ: 6 ч., 4 ч.
Задача 5
Лодка плыла 1,4 ч по течению реки и 1,7 ч против течения. Путь, который проплыла лодка по течению, оказался на 2,2 км меньше пути, который она проплыла против течения. Найдите скорость течения реки, если скорость лодки в стоячей воде 28 км/ч.
Решение
|
Скорость V (км/ч) |
Время t (ч) |
Расстояние S (км) |
По течению |
(28 + V теч) |
1,4 |
Меньше на 2,2 км, чем против течения |
Против течения |
(28 – V теч) |
1,7 |
Условие задачи |
Математический язык |
Скорость течения реки |
х |
Лодка плыла по течению реки 1,4 ч |
1,4 *(28+х) |
и 1,7 ч против течения |
1,7*(28 – х) |
Путь лодки по течению оказался на 2,2 км меньше пути, против течения |
1,7*(28 – х) – 1,4 *(28+х) = 2,2 |
Полученное уравнение соответствует условию задачи
1,7*(28 – х) – 1,4 *(28+х) = 2,2
47,6 – 1,7х – 39,2 – 1,4х = 2,2
8,4 – 3,1х = 2,2
– 3,1х = – 6,2
х = 2 (км/ч) – скорость течения реки
Проверка
1,4 * (28+2) = 1,4*30 = 42 (км)
42 + 2,2 = 44,2 (км)
1,7*(28 – 2) = 1,7*26 = 44,2 (км)
Ответ: 2 км/ч
Вы можете проверить себя, пройдя тест по ссылке без регистрации и абсолютно бесплатно
Решение задач с помощью уравнения (уровень А)
Многие задачи можно решить с помощью уравнений, следуя простому алгоритму (порядок действий):
Как перевести условие задачи на математический язык, оформить ее в формулы и записать уравнение?
Задача 1
Периметр прямоугольника равен 58 см. Длина на 5 см больше ширины. Найдите длины его сторон
Решение
Длина (a) > ширины (b) на 5 см, периметр P=2(a+b) =58 см, тогда полупериметр равен a+b = 58:2 = 29 см
Пусть х – ширина прямоугольника (меньшая из длин сторон)
Условие задачи |
Математический язык |
Ширина прямоугольника |
х |
Длина на 5 см больше ширины |
(х+5) |
Периметр прямоугольника равен 58 см |
P=2(a+b) = 58, a+b = 58:2 = 29 (х+5) + х = 29 |
Полученное уравнение соответствует условию задачи
2х + 5 = 29
2х = 29 – 5
2х = 24
х = 12 (см), тогда
х+5 = 12+5=17 (см)
Ответ: 12 см, 17 см
Задача 2
В двух бидонах 36 литров молока, причем в первом бидоне в 1,4 раза больше, чем во втором. Сколько молока в каждом бидоне?
Решение
Пусть х л – меньшая из искомых величин – количество молока во втором бидоне (согласитесь, умножать на 1,4 проще, чем делить при составлении уравнения)
Условие задачи |
Математический язык |
Количество молока во 2 бидоне |
х |
В первом бидоне в 1,4 раза больше |
1,4х |
В двух бидонах |
36 |
Составим уравнение
х+1,4х=36
2,4х=36
х=36:2,4
х= 15 (л) – во втором бидоне, тогда
1,4х = 1,4*15 = 21 (л) – в первом бидоне
Проверка: по условию, всего молока 36 л, 15+21=36 (л)
Ответ: 21л; 15л
Задача 3
В течении года в Солнечном городе облачных дней было на 23 дня больше, чем дней с дождём или снегом, и на 262 меньше, чем солнечных дней. Сколько было солнечных дней на протяжении года, если известно, что он не был високосным?
Решение
Пусть х дней – количество солнечных дней (то, что нужно найти)
Условие задачи |
Математический язык |
Количество солнечных дней |
х |
Облачных дней на 262 меньше, чем солнечных |
(х – 262) |
Облачных дней больше, чем дней с дождем и снегом на 23 |
(х – 262) – 23 = (х – 285) |
Всего дней в году 365 (по условию год не был високосным) |
х + (х – 262) + (х – 285) = 365 |
Полученное уравнение соответствует условию задачи
х + (х – 262) + (х – 285) = 365
3х – 547 = 365
3х = 365+547
3х = 912
х= 912:3
х= 304 (д)
Проверка:
солнечных дней – 304
облачных дней 304 – 262 = 42
дней с дождем и снегом 304 – 285 = 19
304+42+19 = 365 (д)
Ответ: 304 дня
Задача 4
В первом баке было 55 л масла, а во втором 45 л. После того как из первого бака наполнили 8 бутылей, а из второго 6 таких бутылей, масла в баках стало поровну. Сколько масла входит в одну бутыль?
Решение
|
Было |
Израсходовали |
Стало |
1 бак |
55л |
8 бутылей по ? л |
Поровну |
2 бак |
45л |
6 бутылей по ? л |
Пусть х л – масла входит в 1 бутылку (то, что нужно найти)
Условие задачи |
Математический язык |
Сколько масла входит в 1 бутылку |
х |
Наполнили 8 бутылей из первого бака |
55 – 8х |
Наполнили 6 бутылей из второго бака |
45 – 6х |
Масла в баках стало поровну |
55 – 8х = 45 – 6х |
Полученное уравнение соответствует условию задачи
55 – 8х = 45 – 6х
-8х + 6х = 45 – 55
- 2х = -10
х = 5 (л) – масла входит в одну бутыль
Проверка:
55 – 8*5 =55 – 40 = 15 (л) – стало в первом баке
45 – 6*5 = 45 – 30 = 15(л) – стало во втором баке
15 = 15 – соответствует условию (стало поровну)
Ответ: 5л
Задача 5 (*)
Сумма двух натуральных чисел 474. Одно из них оканчивается цифрой 1. Если эту цифру зачеркнуть, то получится второе число. Найдите эти числа.
Решение
Так как сумма двух натуральных чисел 474, то числа или трехзначные, или одно число двухзначное, а другое трехзначное
Условие задачи |
Математический язык |
если последнюю цифру зачеркнуть то получится второе число |
Числа вида **1 и ** Меньшее из чисел обозначим за х |
Одно из них заканчивается цифрой 1, тогда большее из чисел (десятичная система счисления, например, 25*10=250) |
10*х + 1 |
Сумма двух натуральных чисел 474 |
х + (10 х + 1) = 474 |
Полученное уравнение соответствует условию задачи
х + (10 х + 1) = 474
х + 10 х + 1 = 474
11х = 473
х = 473:11
х=43
тогда второе число 10*43 + 1=431
Проверка:
Второе число 431 – по условию, если последнюю цифру зачеркнуть, то получится второе число 431 = 43, сумма 431+43=474
Ответ: 43 и 431
Эту задачу можно решить иначе, не составляя уравнение
Пройти тест "Решение задач с помощью уравнений" можно по ссылке
https://onlinetestpad.com/ajtohpkqjp6he