Вычислительная математика. Приближенные вычисления


Богомолов Н.В. Практические занятия по математике  №17

Округлите до первого справа верного разряда приближенные значения данных чисел:

0,3281 ± 0,05

Граница абсолютной погрешности ∆а = 0,05 (разряд – сотые) цифры справа налево:1 – сомнительная, 8 – сомнительная,

2 – сомнительная, 3 – верная цифра  

 

Погрешность округления:

|0,3281 – 0,3| = 0,0281

0,05 + 0,0281 = 0,0781   

Ответ: 0,3 ± 0,08

 

2,0637 ± 0,0025

Граница абсолютной погрешности ∆а = 0,0025 (разряд – тысячные) цифры справа налево:7 – сомнительная,  3 – сомнительная,

6 – верная, 0 – верная, 2 - верная цифра  

Погрешность округления:

|2,0637 – 2,06| = 0,0037

0,0025 + 0,0037 = 0,0062

Ответ: 2,06 ± 0,006

 

14,0367 ± 0,8

Граница абсолютной погрешности ∆а = 0,8 (разряд – десятые) цифры справа налево:7 – сомнительная,  6 – сомнительная,

3 – сомнительная, 0 – сомнительная, 4 – верная, 1 - верная цифра   

Погрешность округления:

|14,0367 – 14| = 0,0367

0,8 + 0,0367 = 0,8367

Ответ: 14 ± 1

 

24,734 ± 0,06

Граница абсолютной погрешности ∆а = 0,06 (разряд – сотые) цифры справа налево: 4 – сомнительная,  3 – сомнительная,

7 – верная,  4 – верная, 2 - верная цифра   

Погрешность округления:

|24,734 – 24,7| = 0,034

0,06 + 0,034 = 0,094

Ответ: 24,7 ± 0,1

 

 



Вычислительная математика. Граница абсолютной погрешности


Абсолютная погрешность приближенного значения числа, граница абсолютной погрешности, верные и значащие цифры числа



Верные и значащие цифры числа. Округление чисел.

 Наша система счета или счисления называется десятичной системой счисления, а 10 – основанием этой системы:

 разряд единиц, разряд десятков, разряд сотен и т.д. Аналогично, разряды десятичных дробей: десятые, сотые, тысячные и т.д.

 

Дробь

Целая часть

 

Дробная часть

разряды

тысячи

сотни

десятки

единицы

,

десятые

сотые

тысячные

258,034

-

2

5

8

,

0

3

4

 

         В приближенном числе различают верные и сомнительные цифры. Цифра какого-либо разряда приближенного числа а считается верной в широком смысле, если граница абсолютной погрешности числа а не превосходит единицы того разряда, в котором записана эта цифра.

Если же граница абсолютной погрешности больше единицы какого-либо разряда, то цифра этого разряда и все цифры, расположенные справа от нее считаются сомнительными. Граница абсолютной погрешности ∆а находится непосредственно по записи приближенного значения а  числа х.

Например:                

24,5 ± 0,3    (| х – а | ≤ ∆а )

Приближенное значение 24,5

Граница абсолютной погрешности 0,3

0,3 < 1, значит верные цифры (в широком смысле) – это 2 и 4, а цифра 5 – сомнительная.

375 ± 20

Приближенное значение 375

Граница абсолютной погрешности 20

20 < 100, значит верная цифра 3, а цифры 7 и 5 сомнительные.

Когда рассматриваем верные цифры в широком смысле, то достаточно посмотреть на границу абсолютной погрешности и взять цифры приближенного числа, которые на разряд больше, чем граница абсолютной погрешности.

         Цифра какого-либо разряда приближенного числа а считается верной в строгом смысле, если граница абсолютной погрешности числа а не превосходит половины единицы того разряда, в котором записана эта цифра. Если же граница абсолютной погрешности больше половины единицы какого-либо разряда, то цифра этого разряда и все цифры, расположенные справа от нее считаются сомнительными.

         В числах, полученных в результате измерений или вычислений и используемых при расчётах в качестве исходных данных, а также в десятичной записи приближенного значения числа, все цифры должны быть верными.

         Значащими цифрами приближенного числа, выраженного десятичной дробью считаются все верные цифры этой дроби, кроме нулей, стоящих перед первой цифрой (слева направо), отличной от нуля.

Например:

Приближенное число 10,408 имеет 5 значащих цифр, так как крайняя слева цифра числа отлична от нуля (она равна 1)

Приближенное число 0,01104 имеет 4 значащие цифры:1, 1, 0, 4. Два нуля, стоящие слева от 1 не считаются значащими цифрами

Приближенное число 0,030 имеет 2 значащие цифры: 3 и 0 справа, по правилу два нуля, стоящие слева от цифры 3, не относятся к значащим.

Значащими цифрами приближенного целого числа считаются все его цифры, кроме нулей, поставленных взамен отброшенных или

неизвестных цифр.

Например: Частное 

 

Число 6000 имеет 3 значащие цифры, так как один последний нуль поставлен вместо отброшенной цифры (единицы).

         Округление чисел. При округлении числа а его заменяют числом а1 с меньшим количеством значащих цифр. Абсолютная величина разности

 | а – а1 | называется погрешностью округления.

При округлении числа до m значащих цифр отбрасываются все цифры, стоящие правее m-й значащей цифры, или при сохранении разрядов заменят их нулями. При этом, если первая слева от отброшенных цифр больше или равна 5, то последнюю оставшуюся цифру увеличивают на 1.

При применении этого правила погрешность округления не превосходит половины единицы десятичного разряда, определяемого последней оставленной значащей цифрой.

Округление приближенных значений чисел с сохранением в записи только верных цифр производится до разряда, в котором записана первая справа верная цифра.

Например:

Округлите до первого справа верного разряда приближенные значения данных чисел:

0,3281 ± 0,05

Граница абсолютной погрешности 0,05 (разряд – сотые) цифры справа налево:1 – сомнительная, 8 – сомнительная, 2 – сомнительная, 3 – верная цифра 3  

Погрешность округления:

|0,3281 – 0,3| = 0,0281

0,05 + 0,0281 = 0,0781

Ответ      0,3 ± 0,08



Вычислительная математика. Умножение приближенных значений чисел


Задача №25 (Сборник задач по математике Н.В. Богомолов)





Вычислительная математика. Абсолютная погрешность


АБСОЛЮТНАЯ ПОГРЕШНОСТЬ И ЕЕ ГРАНИЦА.

ЗАПИСЬ ПРИБЛИЖЕННОГО ЧИСЛА.

ВЕРНЫЕ И ЗНАЧАЩИЕ ЦИФРЫ ЧИСЛА

 

х – точное число

а – приближенное число

Разность   х – а    между точным числом х и приближенным числом а называется погрешностью приближения.

Модуль погрешности называется абсолютной погрешностью и обозначается ∆:

| х – а | = ∆

Погрешность и абсолютная погрешность имеют ту же размерность, что и рассматриваемая величина

Граница абсолютной погрешности ∆а – положительное число, которое больше или равно абсолютной погрешности или:

| х – а | ≤ ∆а

Если задана граница абсолютной погрешности ∆а, то число а есть приближенное значение числа х с точностью до ∆а и записывают

х = а ± ∆а, например: 94,5 ± 0,3

В отличие от абсолютной погрешности, граница абсолютной погрешности не определяется однозначно, поэтому на практике выбирается такое значение границы абсолютной погрешности, которое удобно для вычислений и обеспечивает максимальную точность.

Цифра приближенного числа а, записанного в виде десятичной дроби, называется верной (точной), если граница абсолютной погрешности числа не превышает (меньше или равно) единицы того разряда, в котором стоит эта цифра. В противном случае она называется сомнительной, например:

25,63 ± 0,2

Граница погрешности 0,2 , поэтому рассмотрим

цифру 5, разряд единицы, единица разряда 1 и 0,2 < 1 (граница погрешности не превышает единицу разряда), значит цифра 5 – верная, тогда цифра десятков – 2  данного числа тоже верная.

Цифра 6, разряд десятые, единица разряда 0,1 и 0,2 > 0,1  (граница погрешности превышает единицу разряда), значит цифра 6 – сомнительная. Значит и цифра 3 (сотые) будет также сомнительной

2 и 5 – верные цифры, 6 и 3 – сомнительные цифры числа

Запись чисел с сохранением только верных цифр широко используется во всех математических таблицах, в справочниках (физика, астрономия, техника). При этом, по записи приближенного числа можно оценить погрешность приближения, например:

табличные данные: температура кипения золота – 2700 ºС, значит граница абсолютной погрешности 1 ºС, температура кипения йода – 182,8 ºС, значит граница абсолютной погрешности 0,1 ºС.

 

Записи приближенных чисел 0,3; 0,30; 0,300 – неравносильны, т.к. приближенное число 0,3 имеет погрешность не более 0,1;

приближенное число 0,30 имеет погрешность не более 0,01;

приближенное число 0,300 имеет погрешность не более 0,001.

Если целое число содержит в конце нули, не являющиеся верными цифрами, то их заменяют множителем 10р, где р – число таких нулей.

В записи приближенных чисел принято соблюдать следующие правила:

  • Оставлять в записи приближенного числа только верные цифры;
  • Если в десятичной дроби последние верные цифры нули, то их надо выписать;
  • Если число содержит в конце нули, не являющиеся верными цифрами, то они должны быть заменены на 10р , где р – число нулей, которые надо заменить

Например,

Записать правильно следующие приближенные числа:  

  1. а = 0,075 ± 0,000005 – здесь погрешность меньше, чем 0,00001 (0,000005<0,00001), значит а = 0,07500 (последние верные цифры нули и их надо выписать, см. правило)
  2. а = 746000000 ± 5000 здесь погрешность меньше, чем 10000 (5000<10000), значит последние четыре нуля не являются верными цифрами и их надо заменить на  10р  а = 74600·104
  3. а = 0,35  ∆а = 0,00005 – здесь погрешность меньше, чем 0,0001 значит

а = 0,3500 (последние верные цифры нули)

  1. а = 765000  ∆а = 5 – здесь погрешность  5<10  значит а = 76500·10, т.к. последний нуль не является верной цифрой
  2. а = 0,3700  ∆а = 0,05 – здесь погрешность 0,05<0,1 и цифра 7 не является верной, она отбрасывается, значит а = 0,4

В некоторых заданиях необходимо наоборот определить абсолютную погрешность по записи приближенного числа, например,

Указать абсолютную погрешность приближенных чисел:

  1. а = 14,5 ·10, значит ∆а = 10
  2. а = 34,20 т.к. последний нуль является верной цифрой, то ∆а = 0,01
  3. а = 263·104 , значит ∆а = 10000

Число в стандартном виде записывают так:

а = а0, а1 а2 … а·10m , где 1 ≤ а0 ≤ 10,

а0, а1 а2 … аk  –  все верные цифры числа,

показатель m – называется порядком числа.

Если число, записанное в виде десятичной дроби содержит все верные цифры, то все его цифры, начиная с первой слева отличной от нуля, называют значащими, например:

7,03 – три значащие цифры

4400 – четыре значащие цифры

0,000270 – три значащие цифры (нули, расположенные левее первой, отличной   от нуля цифры, не считаются значащими  0,000270).

Округление числа – это замена его числом с меньшим количеством значащих цифр. При округлении числа до m значащих цифр отбрасывают все цифры, стоящие правее m-ой значащей цифры, заменяя их на нули (при сохранении разряда). При этом, если первая из отбрасываемых цифр ≥ 5, то последнюю оставшуюся цифру увеличивают на единицу,

например:

Округлить число с заданной точностью:

  • с точностью до 10-3   (10-3  = 0,001)

1,5783

Значащие цифры – 1, 5, 7  и 8, цифра 3 – сомнительная, т.к. 0,001 > 0,0001 (единицы разряда)

1,5783 ≈ 1,578 (последняя из отбрасываемых цифр 3<5, значит предыдущую оставляем без изменений)

23,4997

Значащие цифры – 2, 3, 4, 9 и 9, цифра 7 – сомнительная

7>5, значит предыдущую увеличиваем на 1, получим

23,4997 ≈ 23,500

  • с точностью до 10-2  (10-2  = 0,01)

4,761 ≈ 4,76

31,009 ≈ 31,01

  • с точностью до 103  (103 = 1000)

159734 ≈ 160000 = 160·103

28,34 ≈ 0 – ни одна из цифр не является значащей 1000 > 10, т.к. задана точность 1000, а заданное число меньше, чем погрешность.

Лисичкин В.Т., Соловейчик И.Л. Сборник задач по математике с решениями для техникумов (учебное пособие)

 

 



Вычислительная математика. Погрешности. Решение задач


ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ И ЕЕ ГРАНИЦА.

РЕШЕНИЕ ЗАДАЧ

 

х – точное число

а – приближенное число

Разность   х – а    между точным числом х и приближенным числом а называется погрешностью приближения.

| х – а | = ∆  – абсолютная погрешность

Отношение абсолютной погрешности к модулю приближенного числа, называется относительной погрешностью

   – относительная погрешность является показателем качества данного приближения, и ее часто выражают в процентах %

Граница относительной погрешности больше или равна относительной погрешности:

      

Если дана граница относительной погрешности, то говорят, что приближение дано с относительной точностью до Ꜫ % и записывают:

х = а (± Ꜫ) или х = а (± Ꜫ %)

В ряде задач границу абсолютной погрешности находят по данной относительной погрешности и модулю приближенного значения величины:

∆а = δ ∙ |а|

Задачи:

  • Скорость света в вакууме 299792,5 ± 0,4 км/ч

Скорость звука в воздухе 331,63 ± 0,04 м/с

Какое измерение точнее?

 

 

   – значит скорость света точнее

 

  • Найдите границы значений грузоподъемности автомобиля, если она равна 2,5 ± (15%)

Дана граница относительной погрешности и необходимо найти границу абсолютной погрешности, используем

∆а = δ ∙ |а|

0,15*2,5 = 0,375 ≈ 0,4

Значит границы значений грузоподъемности автомобиля 2,5 ± 0,4 или 2,1 ≤ 2,5 ≤ 2,9

 

  • Какие из равенств точнее:     ?

     , значит   точнее

Найдите относительную погрешность в % с точностью до десятых

А = 240 ± 1

Решение: границу абсолютной погрешности находим из условия ± 1, значит ∆а=1, далее по формуле

  

Найдите относительную погрешность в % с точностью до сотых

Радиус Земли (в км): R = 6380 ± 1

Решение: границу абсолютной погрешности находим из условия ± 1, значит ∆а=1, далее по формуле

  

Найдите относительную погрешность в % с точностью до сотых

Скорость света в вакууме (в км/с):

Решение: границу абсолютной погрешности находим из условия <100, значит ∆а=100, далее по формуле

  

Диаметр Луны (в км): d = 3476 ± 1

Решение: границу абсолютной погрешности находим из условия ± 1, значит ∆а=1, далее по формуле

 

 

 

 



Математический анализ


Искомая величина (путь, давление, сила, работа и т.д.) соответствует некоторому промежутку изменения переменной величины, которая является переменной интегрирования. Эту переменную интегрирования обозначают через Х, а промежуток ее изменения через [a; b]





Математический анализ

Задача 

Тело, выпущенное вертикально вверх, движется по закону

 , где s(t) измеряется в метрах, а время t в секундах.

Найти:

а) Скорость тела в начальный момент;

б) Скорость тела в момент соприкосновения с землей;

в) Наибольшую высоту подъема тела.

Решение:

Тело движется по параболе, это очевидно, т.к. уравнение, которое описывает движение тела – уравнение параболы (уравнение движения).

а) Скорость тела в начальный момент момент равна первой производной от пути, который описывается уравнением  

 

В момент t=0,

б) В момент соприкосновения с землей       

 т.е. решаем уравнение  

получаем:   , второй корень нам не подходит по смыслу, т.к. время t не может быть отрицательным в классической физике.

Значит, скорость в момент

 м/с

(минус указывает на то, что скорость тела в момент времени

 противоположна направлению начальной скорости.

в) Наибольшая  высота подъема   будет в момент, когда скорость тела равна нулю (в точке максимума функции) и происходит переход от подъема тела к спуску

(переход от возрастания функции к ее убыванию, критическая точка, в которой производная функции равна 0)

,  t = 0,8 с.

Подставляем в уравнение движения

Значит, наибольшая высота подъема равна 8,2 м.



Вычислительная математика. Приближенные вычисления

Действия с приближенными числами.

 

На практике пользуются более простыми правилами, которые называются

Правила подсчета цифр:

 

Задача:

Решение: