Арифметическая прогрессия

Определение арифметической прогрессии. Формула n-го члена арифметической прогрессии

  1. Определение арифметической прогрессии

Из всех последовательностей наиболее изучены две: арифметическая и геометрическая прогрессии, которые будут рассмотрены в этой главе. Сначала рассмотрим арифметическую прогрессию.

Последовательность чисел an, каждый член которой (начиная со второго) равен предыдущему, сложенному с одним и тем же числом d (разностью прогрессии), называется

арифметической прогрессией: an+1 = an+d (n >1).

При d > 0 арифметическая прогрессия возрастает при  d < 0 – убывает.

Пример 1

Найти первые пять членов арифметической прогрессии если

а1=5, d=2.

Из определения арифметической прогрессии an+1 = an+d получаем:

при n=1 a2=a1+d = 5 + 2 = 7, 

при n=2 a3=a2+d = 7 + 2 = 9,

при n=3 a4=a3+d = 9 + 2 = 11,

при n=4 a5=a4+d = 11 + 2 = 13.

Итак, эти члены: 5, 7, 9, 11, 13.

2. Формула n-го члена арифметической прогрессии

В определении арифметической прогрессии использована рекуррентная формула: an+1 = an+d

формула n-го члена арифметической прогрессии:

 an = a1+d (n-1).

Как правило задачи на эту тему достаточно простые. Наиболее распространенный приём решения таких задач – записать условие решения задачи,

используя в качестве неизвестной первый член и разность прогрессии.

Пример 2

В арифметической прогрессии сумма второго и пятого членов равна 8, а третьего и седьмого равна 14. Найти прогрессию.

Решение:

Выразим все члены прогрессии через её первый член и разность:

n=2,  a2 = a1+d,

n=5,  a5= a1+d(5-1)=a1+4d

n=3,  a3= a1+d(3-1)=a1+2d,       

n=7,  a7=a1+d(7-6)=a1+6d

Для определения a1 и d, получаем линейную систему уравнений:

 

 

Из второго уравнения системы вычтем первое и получим

6 = 3d,

или d = 2,

и из любого из уравнений: a1= -1

Пример 3

Первый член арифметической прогрессии a1, a2,  a3,......... равен единице. При каком значении разности прогрессии d величина S = a1a3 + a2a3 имеет минимальное значение?

Решение:

Как и в предыдущей задаче, выразим члены прогрессии a1 и a3 через первый член (a1=1) и разность d:

a2 = a1+d = 1+d,

a3= a1+2d =1+2d.

Тогда S = 1(1 + 2d) + (1 + d)(1 + 2d) = 2d2 + 5d +2.

S=2d2 + 5d +2

Функция S в зависимости от d является квадратичной функцией (график – парабола, ветви которой направлены вверх) и достигает минимального значения в точке вершины параболы

при  

 

Достаточно часто арифметическая прогрессия встречается в текстовых и геометрических задачах.

Пример 4

Четыре целых различных числа образуют арифметическую прогрессию. Одно из этих чисел равно сумме квадратов остальных трех чисел. Найти эти числа.

Решение:

Пусть эти числа имеют вид: 

a; a+d; a+2d; a+3d (очевидно, что а и dцелые числа).

Запишем условие задачи:  a2 + (a + d)2 + (a + 2d)2 = a + 3d,

или 3a2 + 6ad + 5d2 = a + 3d.

Рассмотрим это уравнение как квадратное считая a неизвестной и d параметром

3a2 + 6ad + 5d2 a + 3d=0

Запишем уравнение в виде:

 3a2 + a (6d - 1) + (5d2- 3d) = 0.

Чтобы это уравнение имело решение, необходимо условие: дискриминант D ≥ 0.

D = (6d - 1)2 – 4*3*(5d2- 3d) = 36d2 -12d + 1 - 60d2 + 36d = - 24 d2 + 24d+1 ≥ 0.

Решим квадратное неравенство.

Найдем корни уравнения 

24 d2 - 24d -1=0

d1 ≈  -0,04 и  d2 ≈ 1,04.

Найдем решения неравенства: - 0,04 ≤ d 1,04

В этом промежутке есть два целых значения d = 1 и d = 0 (не подходит, так как даны различные числа).

Для d = 1 уравнение 3a2 + a (6d - 1) + (5d2- 3d) = 0

принимает вид: 3a2 + 5a +2 = 0

Решим это уравнение относительно переменной а

Корни его a1 = - 1, a2 = - 2/3 (не подходит по условию).

Итак искомые числа: -1; 0; 1; 2.

Пример 5

Стороны четырехугольника образуют арифметическую прогрессию. Можно ли в него вписать окружность?

Решение:

Пусть стороны четырехугольника AB, BC, AD, CD в указанном порядке образуют арифметическую прогрессию с первым членом a и разностью d:

AB = a,

BC = a + d,

AD = a + 2d ,

CD = a +3d.

В четырехугольник можно вписать окружность, если суммы его противоположных углов равны, т.е. 

AB + CD = BC + AD.

Проверим это условие:

 a + (a + 3d) = (a + d) + (a + 2d).

Так как равенство верное, то в такой четырехугольник можно вписать окружность.

Но это возможно только в том случае, когда стороны четырехугольник образуют арифметическую прогрессию именно в следующем порядке: AB, BC,AD, CD.

Пример 6

Стороны прямоугольного треугольника образуют арифметическую прогрессию. Найти стороны треугольника.

Решение:

Пусть наименьший катет ∆АВС: АВ = a, тогда второй катет BC = a + d и гипотенуза АС = a + 2d (где  d – разность прогрессии,   d > 0).

Запишем теорему Пифагора: АС2 = АВ2 + ВС2

или (a + 2d)2 = a2 + (a + d)2

a2 + 4ad + 4d2 = a+ a2 + 2ad + d2

a2 -2a2+ 4ad - 2ad  + 4d2 - d2 = 0

-a2 +2ad +3d2=0

a2 - 2ad -3d2=0

Решаем квадратное уравнение относительно переменной а

 

a1=3d

a1= - d – не удовлетворяет условию

Тогда АВ = 3d, ВС= 4d, АС = 5d (где d любое число). Значит условию задачи прямоугольные треугольники, подобные египетскому.

 

3. Характеристическое свойство арифметической прогрессии   

Отметим ещё одно важное свойство  членов арифметической прогрессии. Любой член прогрессии (начиная со второго) равен сумме соседних членов:

 (характеристическое свойство)

Достаточно часто при решении задач рассматриваемой темы используется характеристическое свойство арифметической прогрессии.

Пример 7

При каких значениях х числа 6; х2; х образуют в указанном порядке арифметическую прогрессию? Найти эти числа.

Решение:

an-1 = 6

an = x

an+1= x2

Запишем свойство арифметической прогрессии:

2х2 = 6 + х

Получаем квадратное уравнение

2х2  –  х – 6 = 0



Арифметическая прогрессия

Сумма первых n членов арифметической прогрессии. Решение задач.

Сумма первых n членов арифметической прогрессии:

Sn=a1+a2+…+an

Равна полусумме первого и n-го ее её членов, умноженной на n членов, т.е

вычисляется по формуле:                           

Если заменить an = a1 + d(n-1) то получим формулу:    

Задача 1.

Найти сумму ста первых натуральных чисел.

Решение:

Последовательность 2, 4, 6,….2n,…, 200

d=2

n=100

Ответ: 10100

Задача 2.

Сколько нужно взять членов арифметической прогрессии, где а1=3 и d=2, чтобы их сумма равнялась 168?

Решение:

По формуле

  получим:

 

 

Или     2nn2 = 168

n2 + 2n -168 =0

n= -14 – не подходит по условию задачи

n= 12

Ответ: 12

 

В сборниках типовых вариантов экзаменационных заданий задачи на прогрессию под номером 14.

В задачах ОГЭ на прогрессию нет условий, в которых вам бы сразу были даны а1, d (разность) или Sn.

Здесь надо немного подумать, а может и начертить чертеж.

Например,

Задача 3.

Улитка ползет от одного дерева до другого. Каждый день она проползает на одно и то же расстояние меньше, чем в предыдущий день. Известно, что за первый и последний день улитка проползла

в сумме 6,5 метра. Определите сколько дней улитка потратила на весь путь, если расстояние между деревьями равно 26 метров.

Решение:

В данной задаче нам дана сумма арифметической прогрессии – это путь, который проделала улитка – 26 метров,

также нам дана сумма пути в первый и последний день – 6,5 метра.

Используем формулу нахождения суммы первых n членов арифметической прогрессии

 

   , тогда 6,5n = 52, отсюда  n = 52:6,5 = 8

Ответ: 8

 

Задача 4.

В амфитеатре 13 рядов. В первом ряду 17 мест, а в каждом следующем на 2 места больше, чем в предыдущем. Сколько мест в амфитеатре?

Решение:

Здесь а1 = 13,  d = 2, тогда

  

а13=17 + 2*12 = 17+24 = 41

  

Ответ: 377

 

Задача 5.

В кафе только квадратные столики, за каждый из которых могут сесть 4 человека. Если сдвинуть два квадратных столика, то получится стол, за который могут сесть 6 человек. На рисунке изображен случай, когда сдвинули три квадратных столика вдоль одной линии. В этом случае получился стол, за который могут сесть 8 человек. Сколько человек может сесть за стол, который может получится, если сдвинуть 15 квадратных столиков вдоль одной линии?

Решение:

Здесь а1 = 4, а2 = 6, а3 = 8, тогда d = 6 – 4 = 2

an = a1 + d(n-1)

а15 = 4+2∙14 = 4+28 = 32

Ответ: 32

Задача 6.

На клетчатой бумаге с размером клетки 1х1 нарисована «змейка», представляющая из себя ломаную, состоящую из четного числа звеньев, идущих по линиям сетки. На рисунке изображен случай, когда последнее звено имеет длину 10. Найдите длину ломаной, построенной аналогичным способом, последнее звено которой имеет длину 120.

Решение:

Обратите внимание, что ломаная начинается с центральной клетки:

1 клетка + 1 клетка = 1+1, далее

2 клетки + 2 клетки = 2+2 и т.д., т.е.

Длина = 1+1+2+2+3+3+4+4+5+5+6+6+7+7+8+8+9+9+10+10 = (1+2+3+4+5+6+7+8+9+10)∙2 = 2S10

Тогда, при n=120  длина ломаной будет равна 2∙S120

 

 

Длина ломаной – 2∙7260 = 14520

Ответ: 14520

 

 

 



Вероятность и статистика (Алгебра 7 класс)

Среднее арифметическое, размах и мода

При изучении учебной нагрузки учащихся выделили группу из 12 семиклассников. Их попросили отметить в определенный день время (в минутах), затраченное на выполнение домашнего задания по алгебре. Получили такие данные:

23, 18, 25, 20, 25, 25, 32, 37, 34, 26, 34, 25.

Имея этот ряд данных, можно определить сколько минут в среднем затратили учащиеся на выполнение домашнего задания по алгебре. Для этого надо сложить указанные 12 чисел и сумму разделить на 12.

Число 27, полученное в результате, называют средним арифметическим рассматриваемого ряда чисел.

Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых.

Мы нашли, что на выполнение домашнего задания по алгебре учащиеся затратили в среднем по  27 мин. Проводя аналогичные наблюдения за этой группой учащихся, можно проследить, какова была средняя затрата времени на выполнение домашнего задания по алгебре в течении недели, сравнить среднюю затрату времени на выполнение в какой-либо день домашних заданий по алгебре и русскому языку и т.п. Заметим, что для серьёзных выводов о загруженности учащихся домашними заданиями необходимо выделить для наблюдений значительно большую группу, чем 12 человек (учащихся).

Среднее арифметическое представляет собой то значение величины, которое получается, когда сумма всех наблюдений мысленно распределяется поровну между единицами наблюдения.

Например, выделив среднее арифметическое удоев молока, полученных за сутки на ферме от всех коров, мы найдём тот удой, который получили бы за сутки от одной коровы, если бы все коровы давали одинаковое количество молока, то есть найдём среднесуточный удой молока на ферме от одной коровы.

Аналогично находят среднюю урожайность пшеницы с 1 га в районе, среднюю выработку рабочего бригады за смену и т.п.

Вместе с тем, иногда вычисление среднего арифметического не дает полезной информации.

Например, целесообразно использовать в качестве обобщающего показателя среднюю урожайность зерновых и бахчевых культур в фермерском хозяйстве, средний размер обуви, которую носят учащиеся школы.

В рассмотренном примере мы нашли, что в среднем учащиеся затратили на выполнение домашнего задания по алгебре по 27 мин. Однако анализ приведенного ряда данных показывает, что время, затраченное некоторыми учащимися, существенно отличается от 27 мин., т.е. среднего арифметического. Наибольший расход равен 37 мин., а наименьший - 18 мин.

Разность между наибольшим и наименьшим расходом времени составляет 19 мин. В этом случае говорят, что размах ряда равен 19. 

Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел.

Размах ряда находят, когда хотят определить, как велик разброс данных в ряду. Пусть, например, в течении суток отмечали каждый час температуру воздуха в городе. Для полученного ряда данных полезно не только вычислить среднее арифметическое, показывающее, какова среднесуточная температура, но и найти размах ряда, характеризующий колебания температуры в течении этих суток.

При анализе сведений о времени, затраченном семиклассниками на выполнение домашнего задания по алгебре, нас могут интересовать не только среднее арифметическое и размах полученного ряда данных, но и другие показатели. Интересно, например, знать, какой расход времени является типичными для выделенной группы учащихся, т.е. какое число встречается в ряду данных чаще всего.

Нетрудно заметить, что таким числом является число 25 - мода рассматриваемого ряда.

Модой ряда чисел называется число, которое встречается в данном ряду чаще других.

Ряд чисел может иметь более одной моды, а может не иметь моды совсем. Например, в ряду чисел

47, 46, 50, 52, 47, 52, 49, 45, 43, 53, 53, 47, 52

две моды – это числа 47 и 52, так как каждое из них встречается в ряду по три раза, а остальные числа - менее трех раз.

В ряду чисел

69, 68, 66, 70, 67, 62, 71, 74, 63, 73, 72

моды нет.

Моду ряда данных обычно находят, когда хотят выявить некоторый типичный показатель.

Например, если изучаются данные о размерах мужских сорочек, проданных в определенный день в универмаге, то удобно воспользоваться таким показателем, как мода, который характеризует размер, пользующийся наибольшим спросом. Среднее арифметическое в этом случае не дает полезной информации.

Мода является наиболее приемлемым показателем при выявлении расфасовки некоторого товара, которой отдают предпочтение покупатели, цены на товар данного вида, распространенной на рынке, и т.п.

Рассмотрим ещё пример. Пусть проведя учет деталей, изготовленных за смену рабочими одной бригады, получили такой ряд данных:

36, 35, 35, 36, 37, 37, 36, 37, 38, 36, 36, 36, 39, 39, 37, 39, 38, 38, 36, 39, 36.

Найдем для него среднее арифметическое, размах и моду. Для этого удобно предварительно составить из полученных данных упорядоченный ряд чисел, т.е такой ряд, в котором каждое последующее число не меньше (или не больше) предыдущего.      Получим

35, 35, 36, 36, 36, 36, 36, 36, 36, 36, 37, 37, 37, 37, 38, 38, 38, 39, 39, 39, 39.

Вычислим среднее арифметическое:

 - 37 (приблизительно)

Размах ряда равен 39-35=4. Мода данного ряда равна 36, так как число 36 чаще всего встречается в этом ряду.

Итак, средняя выработка рабочих за смену составляет примерно 37 деталей; различие в выработке рабочих не превосходит 4 деталей; типичной является выработка, равная 36 деталям.

Среднее арифметическое ряда чисел может не совпадать ни с одним из чисел ряда, а мода, если она существует, обязательно совпадает с двумя или более числами ряда.

Кроме того, в отличии от среднего арифметического, понятие «мода» относится не только к числовым данным.

Например, проведя опрос учащихся, можно получить ряд данных, показывающих, каким видом спорта они предпочитают заниматься, какую из телевизионных развлекательных программ они считают наиболее интересной. Модой будут служить те ответы, которые встречаются чаще всего. Этим и объясняется само название «мода».

Такие характеристики, как среднее арифметическое, размах и мода, находят применение в статистике – науке, которая занимается получением, обработкой и анализом количественных данных о разнообразных массовых явлениях, происходящих в природе и обществе.

Слово «статистика» происходить от латинского слова «status», которое означает «состояние, положение вещей».

Статистика изучает численность отдельных групп населения страны и её регионов, перевозку грузов и пассажиров отдельными видами транспорта, природные ресурсы и т.п. Результаты статистических исследований широко используются для практических и научных выводов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Геометрическая прогрессия

Сумма первых n-членов геометрической прогрессии.

 Геометрической прогрессией называется числовая последовательность (bn), первый член которой отличен от нуля, а любой другой её член равен предыдущему, умноженному на одно и то же для данной последовательности отличное от нуля число q, называемое знаменателем прогрессии.

Таким образом, в отличие от определения арифметической прогрессии, определение геометрической прогрессии содержит ограничения на оба её базовых элемента: b1≠0, q≠0.

Из определения геометрической прогрессии следует и то, что любой её член отличен от нуля. Таким образом, для того чтобы однозначно определить геометрическую прогрессию, достаточно знать какой-то её член и знаменатель, т. е. геометрическая прогрессия, как и арифметическая, задаётся двумя элементами.

В самых простых и стандартных случаях это первый член прогрессии и её знаменатель. В более сложных задачах по данным условия можно составить два равенства (уравнения), которые позволят найти b1 и q, а уже затем с их помощью вычислить искомую величину.

Определение геометрической прогрессии позволяет  найти формулу её n-го члена bn = b1 · qn-1 и формулу суммы Sn её первых n членов

Если q<1, то формулу лучше применять в виде

Если же знаменатель геометрической прогрессии равен 1 (q=1), то все её члены равны первому и Sn =n · b1

Задача1.

Найти сумму первых восьми членов геометрической прогрессии (bn), если bn = 3∙2n

Решение:

b1 = 3∙21=6

   

 

Ответ: 1530

 

Задача 2.

Найти сумму первых восьми членов геометрической прогрессии (bn), если b4 = 9,  b5 = 27

Решение:

   

b4 = b1 · 34-1 = 9

b1 · 33 = 9

  

 

Ответ:  

 

Сумма бесконечно убывающей геометрической прогрессии.

Бесконечно убывающая геометрическая прогрессия – это прогрессия, у которой |q| < 1. Для неё определяется понятие суммы членов бесконечно убывающей геометрической прогрессии как число, к которому неограниченно приближается сумма http://chart.apis.google.com/chart?cht=tx&chl=n первых членов рассматриваемой прогрессии при неограниченном возрастании числа http://chart.apis.google.com/chart?cht=tx&chl=n.

Сумма членов бесконечно убывающей геометрической прогрессии выражается формулой

Задача 1.

Найти сумму  

Решение:

  

b=1

  

  

Ответ: 3

Задача 2.

Представить бесконечную периодическую десятичную дробь 5,(4) в виде обыкновенной дроби.

Решение:

Запишем данное число в виде:

 

В скобках записана сумма бесконечно убывающей геометрической прогрессии со знаменателем  

Тогда по формуле

  получим  

Значит  

Ответ:

 



Геометрическая прогрессия

Геометрическая прогрессия. Определение геометрической прогрессии. Формула n-го члена геометрической прогрессии.

По преданию, шахматы были изобретены в V в. н.э. в Индии. Богатый индусский царь Шерам был так восхищен этой игрой, что решил достойно отблагодарить изобретателя шахмат Сета. Сета попросил награду, на первый взгляд поразившую всей своей скромностью. Он попросил выдать ему за первую клетку шахматной доски 1 пшеничное зерно, за вторую – 2 пшеничных зерна, за третью – 4 пшеничных зерна, за четвертую – 8 зерен, за пятую – 16 зерен и т.д. до 64–й клетки доски. То есть, за каждую следующую клетку доски следует выдавать в 2 раза больше зерен, чем за предыдущую.

Царь Шерам был недоволен, так как считал, что Сета, прося столь ничтожную награду, пренебрег царской милостью. Попытаемся вместе с придворным царским математиком подсчитать, сколько же зерен пшеницы должен получить изобретатель Сета.

Для того, чтобы подсчитать цену награды надо сложить числа:

1+2+22+23+…+263 = 264 – 1 = 18 446 744 073 709 551 615

Читается это гигантское число так: 18 квинтиллионов 446 квадриллионов 744 триллиона 73 миллиарда 709 миллионов 551 тысяча 615!

Такую награду должен был дать царь Шерам изобретателю Сету. Чтобы поместить эти зерна в амбар, в основании которого лежит прямоугольник 8х10 метров, высоту этого амбара нужно взять 150 000 000 км – она совпадает с расстоянием от Земли до Солнца. Такого количества зерна нет ни у одного царя, и просьбу Сета выполнить невозможно. Слагаемые данной суммы образуют последовательность, которую в математике называют геометрической прогрессией.

Геометрическая прогрессия – это последовательность, каждый член которой получается из предыдущего умножением на одно и то же число q.

Число q называется знаменателем прогрессии.

Формула n-го члена геометрической прогрессии

Например,

а) последовательность 3, 9, 27, … - геометрическая прогрессия со знаменателем q=3

б) последовательность -3, -6, -12, -24, … - геометрическая прогрессия со знаменателем q=2

в) последовательность      - геометрическая прогрессия со знаменателем     

г) последовательность   - геометрическая прогрессия со знаменателем

Задача 1.

Последовательность (bn) геометрическая прогрессия, причем

 

Найти b1

Решение:

Формула n-го члена геометрической прогрессии

Запишем

  

   тогда     

  

  

q=2

 

q= - 2

 

Ответ: 12;  

 

Характеристическое свойство геометрической прогрессии

Квадрат любого члена геометрической прогрессии, начиная со второго равен произведению двух ее соседних членов.

Извлекая квадратный корень из обеих частей равенства, получим, что для любых трех последовательных членов геометрической прогрессии выполняется равенство

Таким образом, справедливо и обратное утверждение:

Если для всех членов последовательности (bn) начиная со второго, выполняется равенство

      то эта последовательность – геометрическая прогрессия.

         Напомним, что при      называется средним геометрическим чисел a и b, отсюда справедливо утверждение:

Числа a, b, c являются последовательными членами геометрической прогрессии тогда и только тогда, когда выполняется равенство

Это свойство и объясняет название геометрической прогрессии.

Задача 2.

Числа (y – 2)2 , y2,  (y + 2)2 образуют геометрическую прогрессию. Найти y.

Решение:

Эти три числа составляют геометрическую прогрессию тогда и только тогда, когда выполняется равенство:

   

Решая данное уравнение, получим

 

Значит,

Ответ:



Геометрия 7 класс

Прямая и ее части

Через две точки на плоскости можно провести прямую и притом только одну.