Решение простейших тригонометрических уравнений Sin x = m, |m| ≤ 1
(если | m | > 1, то уравнение не имеет решений)
Множество корней уравнения можно записать одной формулой
(1)
При решении тригонометрических уравнений
Sin x = m необходимо учитывать, что главный угол множества решений будет находиться в промежутке
- π/2 ≤ arcSin m ≤ π/2, остальное множество решений находится путем прибавления периода синуса к найденному значению главного угла, см. формулу (1)
Также полезно помнить решения частных случаев
Примеры
Ответ:
Ответ:
, разделим левую и правую часть на 2
Ответ:
, умножим левую и правую часть на 3
Ответ:
Функция синус нечетная поэтому запишем уравнение следующим образом
и умножим обе части уравнения на -1
Это лучше сделать, чтобы коэффициент при x стал положительным
умножим на 2 левую и правую части
Ответ:
Применяем формулу (1) и сразу записываем ответ, оставляя в записи функцию ArcSin, т.к. данное значение не табличное
Ответ:
Применяем формулу (1) и сразу записываем ответ, оставляя в записи функцию ArcSin, т.к. данное значение не табличное
Так как , то запишем ответ в виде
Применяем формулу (1)
,
умножаем левую и правую часть уравнения на 3
Обратите внимание, что умножается угол , а не значение функции (
)
Делим левую и правую часть на 2
Ответ:
Функция синус нечетная поэтому запишем уравнение следующим образом
, умножим обе части уравнения на ( -1)
Умножим на 2 левую и правую части уравнения
Поменяем местами слагаемые:
Перенесем в правую часть с противоположным знаком
Разделим на 2 левую и правую части
Ответ:
Запишем
и далее
(так как функция Sin x нечетная)
Умножим на (-1) левую и правую части
Перенесем в правую часть с противоположным знаком
Умножим на 2 левую и правую части уравнения
Ответ :
Перенесем в правую часть уравнения с противоположным знаком
Разделим левую и правую часть на
Решаем аналогично уравнения 10
Поменяем местами слагаемые:
Перенесем в правую часть с противоположным знаком
Разделим на 2 левую и правую части
Ответ:
Так как функция нечетная, то
Умножаем на (-1) обе части уравнения
и записываем решение (уравнение Sin y = 0 – частный случай, решение данного уравнения ), поэтому
Ответ:
Перепишем
Уравнение вида Sin y = - 1 также частный случай
Решением данного уравнения является
Поэтому
Далее
Ответ:
Извлечем квадратный корень и получим совокупность уравнений:
совокупность уравнений, это не система уравнений. Здесь решение каждого уравнения являются решениями исходного (не надо искать общее решение)
Можно записать решение уравнения следующим образом:
Ответ:
Раскрывая знак модуля получим
Применяя формулу (1) запишем решение
или
Ответ:
Калькулятор для расчета тригонометрических функций в треугольнике https://math4everyone.info/practice-tools/trigonometricheskie-funktsii-sin-cos-tg-ctg/