Школьная математика: подготовка к ОГЭ и ЕГЭ


Прогрессии. Арифметическая прогрессия

Тэги: арифметическая прогрессия , задачи на прогрессии



Определение арифметической прогрессии. Формула n-го члена арифметической прогрессии Определение арифметической прогрессии.



Определение арифметической прогрессии. Формула n-го члена арифметической прогрессии

  1. Определение арифметической прогрессии

Из всех последовательностей наиболее изучены две: арифметическая и геометрическая прогрессии, которые будут рассмотрены в этой главе. Сначала рассмотрим арифметическую прогрессию.

Последовательность чисел an, каждый член которой (начиная со второго) равен предыдущему, сложенному с одним и тем же числом d (разностью прогрессии), называется

арифметической прогрессией: an+1 = an+d (n >1).

При d > 0 арифметическая прогрессия возрастает при  d < 0 – убывает.

Пример 1

Найти первые пять членов арифметической прогрессии если

а1=5, d=2.

Из определения арифметической прогрессии an+1 = an+d получаем:

при n=1 a2=a1+d = 5 + 2 = 7, 

при n=2 a3=a2+d = 7 + 2 = 9,

при n=3 a4=a3+d = 9 + 2 = 11,

при n=4 a5=a4+d = 11 + 2 = 13.

Итак, эти члены: 5, 7, 9, 11, 13.

2. Формула n-го члена арифметической прогрессии

В определении арифметической прогрессии использована рекуррентная формула: an+1 = an+d

формула n-го члена арифметической прогрессии:

 an = a1+d (n-1).

Как правило задачи на эту тему достаточно простые. Наиболее распространенный приём решения таких задач – записать условие решения задачи,

используя в качестве неизвестной первый член и разность прогрессии.

Пример 2

В арифметической прогрессии сумма второго и пятого членов равна 8, а третьего и седьмого равна 14. Найти прогрессию.

Решение:

Выразим все члены прогрессии через её первый член и разность:

n=2,  a2 = a1+d,

n=5,  a5= a1+d(5-1)=a1+4d

n=3,  a3= a1+d(3-1)=a1+2d,       

n=7,  a7=a1+d(7-6)=a1+6d

Для определения a1 и d, получаем линейную систему уравнений:

 

 

Из второго уравнения системы вычтем первое и получим

6 = 3d,

или d = 2,

и из любого из уравнений: a1= -1

Пример 3

Первый член арифметической прогрессии a1, a2,  a3,......... равен единице. При каком значении разности прогрессии d величина S = a1a3 + a2a3 имеет минимальное значение?

Решение:

Как и в предыдущей задаче, выразим члены прогрессии a1 и a3 через первый член (a1=1) и разность d:

a2 = a1+d = 1+d,

a3= a1+2d =1+2d.

Тогда S = 1(1 + 2d) + (1 + d)(1 + 2d) = 2d2 + 5d +2.

S=2d2 + 5d +2

Функция S в зависимости от d является квадратичной функцией (график – парабола, ветви которой направлены вверх) и достигает минимального значения в точке вершины параболы

при  

 

Достаточно часто арифметическая прогрессия встречается в текстовых и геометрических задачах.

Пример 4

Четыре целых различных числа образуют арифметическую прогрессию. Одно из этих чисел равно сумме квадратов остальных трех чисел. Найти эти числа.

Решение:

Пусть эти числа имеют вид: 

a; a+d; a+2d; a+3d (очевидно, что а и dцелые числа).

Запишем условие задачи:  a2 + (a + d)2 + (a + 2d)2 = a + 3d,

или 3a2 + 6ad + 5d2 = a + 3d.

Рассмотрим это уравнение как квадратное считая a неизвестной и d параметром

3a2 + 6ad + 5d2 a + 3d=0

Запишем уравнение в виде:

 3a2 + a (6d - 1) + (5d2- 3d) = 0.

Чтобы это уравнение имело решение, необходимо условие: дискриминант D ≥ 0.

D = (6d - 1)2 – 4*3*(5d2- 3d) = 36d2 -12d + 1 - 60d2 + 36d = - 24 d2 + 24d+1 ≥ 0.

Решим квадратное неравенство.

Найдем корни уравнения 

24 d2 - 24d -1=0

d1 ≈  -0,04 и  d2 ≈ 1,04.

Найдем решения неравенства: - 0,04 ≤ d 1,04

В этом промежутке есть два целых значения d = 1 и d = 0 (не подходит, так как даны различные числа).

Для d = 1 уравнение 3a2 + a (6d - 1) + (5d2- 3d) = 0

принимает вид: 3a2 + 5a +2 = 0

Решим это уравнение относительно переменной а

Корни его a1 = - 1, a2 = - 2/3 (не подходит по условию).

Итак искомые числа: -1; 0; 1; 2.

Пример 5

Стороны четырехугольника образуют арифметическую прогрессию. Можно ли в него вписать окружность?

Решение:

Пусть стороны четырехугольника AB, BC, AD, CD в указанном порядке образуют арифметическую прогрессию с первым членом a и разностью d:

AB = a,

BC = a + d,

AD = a + 2d ,

CD = a +3d.

В четырехугольник можно вписать окружность, если суммы его противоположных углов равны, т.е. 

AB + CD = BC + AD.

Проверим это условие:

 a + (a + 3d) = (a + d) + (a + 2d).

Так как равенство верное, то в такой четырехугольник можно вписать окружность.

Но это возможно только в том случае, когда стороны четырехугольник образуют арифметическую прогрессию именно в следующем порядке: AB, BC,AD, CD.

Пример 6

Стороны прямоугольного треугольника образуют арифметическую прогрессию. Найти стороны треугольника.

Решение:

Пусть наименьший катет ∆АВС: АВ = a, тогда второй катет BC = a + d и гипотенуза АС = a + 2d (где  d – разность прогрессии,   d > 0).

Запишем теорему Пифагора: АС2 = АВ2 + ВС2

или (a + 2d)2 = a2 + (a + d)2

a2 + 4ad + 4d2 = a+ a2 + 2ad + d2

a2 -2a2+ 4ad - 2ad  + 4d2 - d2 = 0

-a2 +2ad +3d2=0

a2 - 2ad -3d2=0

Решаем квадратное уравнение относительно переменной а

 

a1=3d

a1= - d – не удовлетворяет условию

Тогда АВ = 3d, ВС= 4d, АС = 5d (где d любое число). Значит условию задачи прямоугольные треугольники, подобные египетскому.

 

3. Характеристическое свойство арифметической прогрессии   

Отметим ещё одно важное свойство  членов арифметической прогрессии. Любой член прогрессии (начиная со второго) равен сумме соседних членов:

 (характеристическое свойство)

Достаточно часто при решении задач рассматриваемой темы используется характеристическое свойство арифметической прогрессии.

Пример 7

При каких значениях х числа 6; х2; х образуют в указанном порядке арифметическую прогрессию? Найти эти числа.

Решение:

an-1 = 6

an = x

an+1= x2

Запишем свойство арифметической прогрессии:

2х2 = 6 + х

Получаем квадратное уравнение

2х2  –  х – 6 = 0


Прогрессии. Геометрическая прогрессия

Тэги: геометрическая прогрессия , формула члена прогрессии , задачи на прогрессии



Геометрическая прогрессия. Определение геометрической прогрессии. Формула n-го члена геометрической прогрессии.



Геометрическая прогрессия. Определение геометрической прогрессии. Формула n-го члена геометрической прогрессии.

По преданию, шахматы были изобретены в V в. н.э. в Индии. Богатый индусский царь Шерам был так восхищен этой игрой, что решил достойно отблагодарить изобретателя шахмат Сета. Сета попросил награду, на первый взгляд поразившую всей своей скромностью. Он попросил выдать ему за первую клетку шахматной доски 1 пшеничное зерно, за вторую – 2 пшеничных зерна, за третью – 4 пшеничных зерна, за четвертую – 8 зерен, за пятую – 16 зерен и т.д. до 64–й клетки доски. То есть, за каждую следующую клетку доски следует выдавать в 2 раза больше зерен, чем за предыдущую.

Царь Шерам был недоволен, так как считал, что Сета, прося столь ничтожную награду, пренебрег царской милостью. Попытаемся вместе с придворным царским математиком подсчитать, сколько же зерен пшеницы должен получить изобретатель Сета.

Для того, чтобы подсчитать цену награды надо сложить числа:

1+2+22+23+…+263 = 264 – 1 = 18 446 744 073 709 551 615

Читается это гигантское число так: 18 квинтиллионов 446 квадриллионов 744 триллиона 73 миллиарда 709 миллионов 551 тысяча 615!

Такую награду должен был дать царь Шерам изобретателю Сету. Чтобы поместить эти зерна в амбар, в основании которого лежит прямоугольник 8х10 метров, высоту этого амбара нужно взять 150 000 000 км – она совпадает с расстоянием от Земли до Солнца. Такого количества зерна нет ни у одного царя, и просьбу Сета выполнить невозможно. Слагаемые данной суммы образуют последовательность, которую в математике называют геометрической прогрессией.

Геометрическая прогрессия – это последовательность, каждый член которой получается из предыдущего умножением на одно и то же число q.

Число q называется знаменателем прогрессии.

Формула n-го члена геометрической прогрессии

Например,

а) последовательность 3, 9, 27, … - геометрическая прогрессия со знаменателем q=3

б) последовательность -3, -6, -12, -24, … - геометрическая прогрессия со знаменателем q=2

в) последовательность      - геометрическая прогрессия со знаменателем     

г) последовательность   - геометрическая прогрессия со знаменателем

Задача 1.

Последовательность (bn) геометрическая прогрессия, причем

 

Найти b1

Решение:

Формула n-го члена геометрической прогрессии

Запишем

  

   тогда     

  

  

q=2

 

q= - 2

 

Ответ: 12;  

 

Характеристическое свойство геометрической прогрессии

Квадрат любого члена геометрической прогрессии, начиная со второго равен произведению двух ее соседних членов.

Извлекая квадратный корень из обеих частей равенства, получим, что для любых трех последовательных членов геометрической прогрессии выполняется равенство

Таким образом, справедливо и обратное утверждение:

Если для всех членов последовательности (bn) начиная со второго, выполняется равенство

      то эта последовательность – геометрическая прогрессия.

         Напомним, что при      называется средним геометрическим чисел a и b, отсюда справедливо утверждение:

Числа a, b, c являются последовательными членами геометрической прогрессии тогда и только тогда, когда выполняется равенство

Это свойство и объясняет название геометрической прогрессии.

Задача 2.

Числа (y – 2)2 , y2,  (y + 2)2 образуют геометрическую прогрессию. Найти y.

Решение:

Эти три числа составляют геометрическую прогрессию тогда и только тогда, когда выполняется равенство:

   

Решая данное уравнение, получим

 

Значит,

Ответ: