Определение арифметической прогрессии. Формула n-го члена арифметической прогрессии Определение арифметической прогрессии.
Определение арифметической прогрессии. Формула n-го члена арифметической прогрессии
1. Определение арифметической прогрессии
Из всех последовательностей наиболее изучены две: арифметическая и геометрическая прогрессии, которые будут рассмотрены в этой главе. Сначала рассмотрим арифметическую прогрессию.
Последовательность чисел an, каждый член которой (начиная со второго) равен предыдущему, сложенному с одним и тем же числом d (разностью прогрессии), называется
арифметической прогрессией: an+1 = an+d (n >1).
При d > 0 арифметическая прогрессия возрастает при d < 0 – убывает.
Пример 1
Найти первые пять членов арифметической прогрессии если
а1=5, d=2.
Из определения арифметической прогрессии an+1 = an+d получаем:
при n=1 a2=a1+d = 5 + 2 = 7,
при n=2 a3=a2+d = 7 + 2 = 9,
при n=3 a4=a3+d = 9 + 2 = 11,
при n=4 a5=a4+d = 11 + 2 = 13.
Итак, эти члены: 5, 7, 9, 11, 13.
2. Формула n-го члена арифметической прогрессии
В определении арифметической прогрессии использована рекуррентная формула: an+1 = an+d
формула n-го члена арифметической прогрессии:
an = a1+d (n-1).
Как правило задачи на эту тему достаточно простые. Наиболее распространенный приём решения таких задач – записать условие решения задачи,
используя в качестве неизвестной первый член и разность прогрессии.
Пример 2
В арифметической прогрессии сумма второго и пятого членов равна 8, а третьего и седьмого равна 14. Найти прогрессию.
Решение:
Выразим все члены прогрессии через её первый член и разность:
n=2, a2 = a1+d,
n=5, a5= a1+d(5-1)=a1+4d
n=3, a3= a1+d(3-1)=a1+2d,
n=7, a7=a1+d(7-6)=a1+6d
Для определения a1 и d, получаем линейную систему уравнений:
Из второго уравнения системы вычтем первое и получим
6 = 3d,
или d = 2,
и из любого из уравнений: a1= -1
Пример 3
Первый член арифметической прогрессии a1, a2, a3,......... равен единице. При каком значении разности прогрессии d величина S = a1a3 + a2a3 имеет минимальное значение?
Решение:
Как и в предыдущей задаче, выразим члены прогрессии a1 и a3 через первый член (a1=1) и разность d:
a2 = a1+d = 1+d,
a3= a1+2d =1+2d.
Тогда S = 1(1 + 2d) + (1 + d)(1 + 2d) = 2d2 + 5d +2.
S=2d2 + 5d +2
Функция S в зависимости от d является квадратичной функцией (график – парабола, ветви которой направлены вверх) и достигает минимального значения в точке вершины параболы
при
Достаточно часто арифметическая прогрессия встречается в текстовых и геометрических задачах.
Пример 4
Четыре целых различных числа образуют арифметическую прогрессию. Одно из этих чисел равно сумме квадратов остальных трех чисел. Найти эти числа.
Решение:
Пусть эти числа имеют вид:
a; a+d; a+2d; a+3d (очевидно, что а и d – целые числа).
Запишем условие задачи: a2 + (a + d)2 + (a + 2d)2 = a + 3d,
или 3a2 + 6ad + 5d2 = a + 3d.
Рассмотрим это уравнение как квадратное считая a неизвестной и d параметром
3a2 + 6ad + 5d2 – a + 3d=0
Запишем уравнение в виде:
3a2 + a (6d - 1) + (5d2- 3d) = 0.
Чтобы это уравнение имело решение, необходимо условие: дискриминант D ≥ 0.
D = (6d - 1)2 – 4*3*(5d2- 3d) = 36d2 -12d + 1 - 60d2 + 36d = - 24 d2 + 24d+1 ≥ 0.
Решим квадратное неравенство.
Найдем корни уравнения
24 d2 - 24d -1=0
d1 ≈ -0,04 и d2 ≈ 1,04.
Найдем решения неравенства: - 0,04 ≤ d ≤ 1,04
В этом промежутке есть два целых значения d = 1 и d = 0 (не подходит, так как даны различные числа).
Для d = 1 уравнение 3a2 + a (6d - 1) + (5d2- 3d) = 0
принимает вид: 3a2 + 5a +2 = 0
Решим это уравнение относительно переменной а
Корни его a1 = - 1, a2 = - 2/3 (не подходит по условию).
Итак искомые числа: -1; 0; 1; 2.
Пример 5
Стороны четырехугольника образуют арифметическую прогрессию. Можно ли в него вписать окружность?
Решение:
Пусть стороны четырехугольника AB, BC, AD, CD в указанном порядке образуют арифметическую прогрессию с первым членом a и разностью d:
AB = a,
BC = a + d,
AD = a + 2d ,
CD = a +3d.
В четырехугольник можно вписать окружность, если суммы его противоположных углов равны, т.е.
AB + CD = BC + AD.
Проверим это условие:
a + (a + 3d) = (a + d) + (a + 2d).
Так как равенство верное, то в такой четырехугольник можно вписать окружность.
Но это возможно только в том случае, когда стороны четырехугольник образуют арифметическую прогрессию именно в следующем порядке: AB, BC,AD, CD.
Пример 6
Стороны прямоугольного треугольника образуют арифметическую прогрессию. Найти стороны треугольника.
Решение:
Пусть наименьший катет ∆АВС: АВ = a, тогда второй катет BC = a + d и гипотенуза АС = a + 2d (где d – разность прогрессии, d > 0).
Запишем теорему Пифагора: АС2 = АВ2 + ВС2
или (a + 2d)2 = a2 + (a + d)2
a2 + 4ad + 4d2 = a2 + a2 + 2ad + d2
a2 -2a2+ 4ad - 2ad + 4d2 - d2 = 0
-a2 +2ad +3d2=0
a2 - 2ad -3d2=0
Решаем квадратное уравнение относительно переменной а
a1=3d
a1= - d – не удовлетворяет условию
Тогда АВ = 3d, ВС= 4d, АС = 5d (где d – любое число). Значит условию задачи прямоугольные треугольники, подобные египетскому.
3. Характеристическое свойство арифметической прогрессии
Отметим ещё одно важное свойство членов арифметической прогрессии. Любой член прогрессии (начиная со второго) равен сумме соседних членов:
(характеристическое свойство)
Достаточно часто при решении задач рассматриваемой темы используется характеристическое свойство арифметической прогрессии.
Пример 7
При каких значениях х числа 6; х2; х образуют в указанном порядке арифметическую прогрессию? Найти эти числа.
Решение:
an-1 = 6
an = x
an+1= x2
Запишем свойство арифметической прогрессии:
2х2 = 6 + х
Получаем квадратное уравнение
2х2 – х – 6 = 0
Арифметическая прогрессия. Формула суммы первых n-членов.
Сумма первых n членов арифметической прогрессии. Решение задач.
Сумма первых n членов арифметической прогрессии:
Sn=a1+a2+…+an
Равна полусумме первого и n-го ее её членов, умноженной на n членов, т.е
вычисляется по формуле:
Если заменить an = a1 + d(n-1) то получим формулу:
Задача 1.
Найти сумму ста первых натуральных чисел.
Решение:
Последовательность 2, 4, 6,….2n,…, 200
d=2
n=100
Ответ: 10100
Задача 2.
Сколько нужно взять членов арифметической прогрессии, где а1=3 и d=2, чтобы их сумма равнялась 168?
Решение:
По формуле
получим:
Или 2n – n2 = 168
n2 + 2n -168 =0
n= -14 – не подходит по условию задачи
n= 12
Ответ: 12
В сборниках типовых вариантов экзаменационных заданий задачи на прогрессию под номером 14.
В задачах ОГЭ на прогрессию нет условий, в которых вам бы сразу были даны а1, d (разность) или Sn.
Здесь надо немного подумать, а может и начертить чертеж.
Например,
Задача 3.
Улитка ползет от одного дерева до другого. Каждый день она проползает на одно и то же расстояние меньше, чем в предыдущий день. Известно, что за первый и последний день улитка проползла
в сумме 6,5 метра. Определите сколько дней улитка потратила на весь путь, если расстояние между деревьями равно 26 метров.
Решение:
В данной задаче нам дана сумма арифметической прогрессии – это путь, который проделала улитка – 26 метров,
также нам дана сумма пути в первый и последний день – 6,5 метра.
Используем формулу нахождения суммы первых n членов арифметической прогрессии
, тогда 6,5n = 52, отсюда n = 52:6,5 = 8
Ответ: 8
Задача 4.
В амфитеатре 13 рядов. В первом ряду 17 мест, а в каждом следующем на 2 места больше, чем в предыдущем. Сколько мест в амфитеатре?
Решение:
Здесь а1 = 13, d = 2, тогда
а13=17 + 2*12 = 17+24 = 41
Ответ: 377
Задача 5.
В кафе только квадратные столики, за каждый из которых могут сесть 4 человека. Если сдвинуть два квадратных столика, то получится стол, за который могут сесть 6 человек. На рисунке изображен случай, когда сдвинули три квадратных столика вдоль одной линии. В этом случае получился стол, за который могут сесть 8 человек. Сколько человек может сесть за стол, который может получится, если сдвинуть 15 квадратных столиков вдоль одной линии?
Решение:
Здесь а1 = 4, а2 = 6, а3 = 8, тогда d = 6 – 4 = 2
an = a1 + d(n-1)
а15 = 4+2∙14 = 4+28 = 32
Ответ: 32
Задача 6.
На клетчатой бумаге с размером клетки 1х1 нарисована «змейка», представляющая из себя ломаную, состоящую из четного числа звеньев, идущих по линиям сетки. На рисунке изображен случай, когда последнее звено имеет длину 10. Найдите длину ломаной, построенной аналогичным способом, последнее звено которой имеет длину 120.
Решение:
Обратите внимание, что ломаная начинается с центральной клетки:
1 клетка + 1 клетка = 1+1, далее
2 клетки + 2 клетки = 2+2 и т.д., т.е.
Длина = 1+1+2+2+3+3+4+4+5+5+6+6+7+7+8+8+9+9+10+10 = (1+2+3+4+5+6+7+8+9+10)∙2 = 2S10
Тогда, при n=120 длина ломаной будет равна 2∙S120
Длина ломаной – 2∙7260 = 14520
Ответ: 14520